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Presentation Summary
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1. Rowhammer → Corrupt Mem

2. TrustZone → Secure enclave       ~25 min

3. Attack: Corrupt TrustZone Mem

4. Questions



Context - Existing Rowhammer-based Exploitations
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● Intel
○ clflush instruction (2014 original attack)
○ cache eviction (rowhammer.js 2015)
○ non-temporal instructions (2016)
○ one location hammering (few days ago)

● Mobile (arm):
no direct way for unprivileged user 
○ Drammer (end 2016)

uses uncached memory region
→ exploit gains root privilege

○ No cache eviction method working yet
→ not enough access/second (yet)?



Context - Existing TrustZone Attacks
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● Software Bugs in Qualcomm’s TEE, and Widevine TA:
○ Dan Rosenberg (2014):

Integer overflow
No exploitation

○ Gal Beniamini (2015 - 2016):
1. Missing parameter validation in Secure Kernel Call

→ Shellcode execution in Secure Kernel
2. Buffer Overflow in Widevine TA

→ Shellcode execution in TA, and then in Secure Kernel 

● CLKSCREW (Tang 2017): 
Faults in microarchitecture using frequency and voltage scaling

→ Retrieve private key, Load self-signed TA

● Other ARM Plaforms: undisclosed / unknown?

⇒ Few TrustZone Attack



Rowhammer attack against TrustZone 

6

Assumption:

● Rowhammer vulnerable device
● Kernel Privilege in Normal OS

Objectives:

● Corrupt Memory marked Secure
● If possible, exploit corruptions in order to gain more privileges

We focus on the Secure / Non-Secure border
→ We use maximum privilege in Non-Secure Side

Linx Kernel TEE Kernel

NS S

User TEE User



Realization - Example Exploitation
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Platform: Any Cortex-A based ARM Development board with TrustZone Support

● Linux in Non-Secure Side
● Custom Trusty based TEE

PoC attack:

1. TEE provides an RSA-CRT signing mechanism
2. Secret Key stored in S Memory
3. Linux uses Rowhammer to fault the Secret Key (crosses the TrustZone border)
4. Linux uses faulty signature to recover Secret Key “Bellcore”

(Boneh, DeMillo, Lipton)



Exploitation Principle (1)
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Linux TEE

Non-Secure World 
“NS”

Secure World
“S”

RSA key
• public: n, e
• private: d, p, q
• precomputed private: dp,dq, qInv

Please sign m=“Hello”

Compute using RSA key
  c ← RSA-CRT(key, m)Return signature c=0x24A96…

 and public key (n,e)



Exploitation Principle (2)
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Linux TEE

Non-Secure World 
“NS”

Secure World
“S”

RSA key
• public: n, e
• private: d, p, q
• precomputed private: dp

’,dq, qInvPlease sign m=“Hello”

Compute using RSA key
  c’ ← RSA-CRT(key’, m)Return signature c’=0x68F6…

  and public key (n,e)

Rowhammer attack
 targeted at key area Faults dp — its value is now dp

’ 

Recovers private RSA key
Using m and c’ values



Rowhammer
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System Architecture
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SoC

ProcessorProcessorProcessor

Processor

DRAM 
Controller

DRAM Chip

AXI

DDR
Protocol

DRAM Chip

L1
Cache

L2 
Cache

AXI

Need to Go through the caches! May reorder
accesses

usually only 1 PoP
on mobile 



How to generate 
faults in DRAM
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DRAM Storage Cell

13

Capacitor as storage mechanism

Capacitor either:

● charged → logic 1
● discharged → logic 0

Capacitors lose their charge over time

⇒ have to be recharged periodically
“refreshed”



A DRAM Chip contains multiple Banks
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Usually on Mobile:

1 PoP LPDDR3/4 Chip

Image: Onur Mutlu



x8 DRAM Bank

15Image: Memory Systems - Cache, DRAM, Disk



DRAM Array
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ACTIVATE
Open Row
→ Row Buffer

READ/WRITE
R or W Column
(in buffer)

PRECHARGE
Close Row

REFRESH

Row Buffer

Row 3

Row 2

Row 1

Row 0

Cell
Bitline

Wordline

R
ow

 D
ec

od
er

Sense 
Amplifier

Address

Column Decoder

MS

LS

Data Out



Row Access
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Access to an opened row:

● No need to ACTIVATE
● Just READ/WRITE to access row buffer

Access to a closed row:

● PRECHARGE current row
● ACTIVATE new row
● READ/WRITE



Simple-Sided Rowhammer
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Need to ACTIVATE two distinct Rows in the same Array
Because accessing the same Row consecutively ⇒ hit the row buffer  

ROW BUFFER

ROW 4

ROW 3

ROW 2

ROW 1

May generate

0 → 1 or 1 → 0 flips



Double-Sided Rowhammer
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Hammer rows adjacent to the target Row → generates more flips

Flips are reproducible on
 a particular RAM chip
→ due to manufacturing?

ROW BUFFER

ROW n+1

ROW n

ROW n-1



How to address 
rows from CPU
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Memory Mapping - How to address adjacent rows (1) 
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Bank 0 Bank 1

4 Banks, x8 Bus Width
No Bank Interleaving

8 A
rra

ys

. . .

Byte [0x00]
Row 0 Col 0: 8 bits
(1 bit per Array)

Byte [0x01]
Byte [n_col - 1]

Byte [n_col]

Bottom and Top rows can’t 
be attacked with double 
sided technique



Memory Mapping - How to address adjacent rows (2) 
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Bank 0 Bank 1

4 Banks, x8 Bus Width
With Bank Interleaving

8 A
rra

ys

Byte [0x00]
Row 0 Col 0: 8 bits
(1 bit per Array)

Byte [0x01]
Byte [n_col - 1]

Byte [n_col]

. . .

Byte 
[n_col×n_banks]



Deduce Memory Characterics & Configuration using Timing Characterization
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Pseudo code (simplified)

base = 0x…;
for (i = start;
     i < end;
     i += step) {
  ts = start()
  read_at(base)
  read_at(i)
  time[i] = end(ts)
}

Can be crossed checked with datasheets if DRAM Chip is identified



Rowhammer Implementation (2)
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Need to map region around target physical location

→ ioremap [target_pa - Δ, target_pa + Δ]

Need to bypass the caches: “uncacheable” region

→ ioremap_nocache 
SoC

ProcessorProcessorProcessor

Processor
DMC DRAM

L1 L2

Kernel TEE 
Kernel

NS S

User TEE User

Timer



Rowhammer Implementation (1)
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/* row before */
addrs[0] = target_va - (mem->n_banks * mem->row_size);
/* row after */
addrs[1] = target_va + (mem->n_banks * mem->row_size);

for (int j = 0; j < iterations; j++) {
    *row_before = pattern; /* write or read */
    *row_after  = pattern;
}

In Kernel Module for simplicity
Code Simplified:



TrustZone
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TrustZone Rationale
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Want:
● Secure processor runs OS with manageable Security 

≠ Android
● Some hardware resources only accessible to Secure OS

Do not want to:
● Waste silicon space on separate processor
● Hardware duplication

→ TrustZone:
● Time sharing of processor, ≈ virtually 2 distinct processors
● Some resources available only to the Secure processor



System Bus - AXI
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Masters:

● Read from slaves
● Write to slaves

TrustZone Introduces a new 
transaction attribute:

NS ∈ {0, 1}

CPU

DRAM 
Controller

AXI interface

Image: ARM

S read to 0x1234 NS read to 
0x1234

ex: DMA Controller, 
Modem, ...



Adaptations to IPs

AXI slave responsible to enforce S/NS logic

  L1, L2 Caches
  Memory controller
  Touchscreen
  DMA controller
  MMU
  Interrupt controller
  …

Existing devices can be modified to become aware of TrustZone
Or an extra adapter IP can wrap a device to provide S/NS logic

29



ARM
Gadget2008
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ARM Procesor Architecture extensions

Principles:

Only “secure software” can make S transactions.
NS OS calls “secure software” which checks if call request is legal

Implementation:

New state dimension: NS is {0, 1}
New processor mode: monitor (in addition to usr, svc, …) PL1
New instruction: SMC, similar to SVC but for: PL1 → monitor
New system controls (SCR, …), CP15 Register banking

31



Modes, privilege levels, Security States (Simplified, ARMv7-A)
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Modes, privilege levels, Security States (Simplified, ARMv7-A)

SMC

SVC

SMC

SVC

ERET
ERET

ERET ERET
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In one state at a time
(per core)

Start linux

Execution
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Bootloader

Non-Secure Secure

Time

Startup

Init

Context Switches
through monitor

S Interrupt

Linux

TEE OS

Offer services 
to linux



Attack
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RSA-CRT - Fast implementation of the RSA signature based on CRT
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Signature s of the message m is defined as:

Some constants precalculated at key generation

The signature can be calculated:
exponents and modulus are smaller ⇒ faster



 RSA-CRT Fault Attack - “Bellcore”
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On the Importance of Checking Cryptographic Protocols for Faults
Boneh, DeMillo, Lipton 1997

If dq is faulted and becomes dq’
The signature calculation become s’ instead of s

p can then be calculated and is: 
The whole private key can then be derived



PoC - Implemented System Overview
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Trusty generates random RSA key in secure 
memory at boot

Offers signature mechanism to Linux

“row” module used to generate faults to a 
target address using Rowhammer

“sign” tool uses Trusty’s signature service 
and calculates gcd

sign
userspace tool

Linux Trusty

NS S

row

ioctl

Shared mem
+ context switch



Memory Setup
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UnusedLinux

0 256M 512M 768M 1G

0x1000_0000

0

DRAM
U
A
R
T

G
I
C

0x1000_0000 0x5000_0000 0xFFFF_FFFF

0x5000_00000x2000_0000 0x3000_0000 0x4000_0000

Board physical address space

Offset in 
DRAM

1G

Keys Trusty

DRAM Physical addresses 0x4800_0000



Example Session - Sign Message - No Fault in Key
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[root@alarm ~]# ./sign hello
message: 0x68656c6c6f00000000000000000000000000…
[ 5326.601784] row: ROW_IOCTL_SIGNATURE
sign_crt:88: s = 0x7c1a8306e5a4910b3d94d06e62174f4669…
public key:
  e = 0x3
  n = 0xc2c617ed42871bfc97b83cc1e392f0b03323858…
signature: 0x7c1a8306e5a4910b3d94d06e62174f4669…
gcd == n, no fault have happened in the key area

Kernel

Trusty

Userspace



Example Session - Hammer
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[root@alarm ~]# echo 1 > /sys/module/row/params/do_hammer
[ 5343.279638] row: addr[0]=a17f0000 (pa 400F0000)
[ 5343.284277] row: addr[1]=a1810000 (pa 40110000)
[ 5346.779417] dmc: R=2MB   nR=0M  0 MnR/s (29) @ ~0 MB/s
[ 5346.779417]      W=128MB nW=32M 9 MnW/s (4)  @ ~36 MB/s
[ 5346.790429] row: elapsed=42294

Memory Controller 
Counters



Example Session - Sign Message - Key Faulted
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[root@alarm ~]# ./sign hello
message: 0x68656c6c6f00000000000000000000000000…
[ 5355.711724] row: ROW_IOCTL_SIGNATURE
sign_crt:88: s = 0x657eb547c65344406a9d7f44a58d…
public key:
  e = 0x3
  n = 0xc2c617ed42871bfc97b83cc1e392f0b03323858…
signature: 0x657eb547c65344406a9d7f44a58da72860…
Success: found private factor f: 
0xc5d85c20911b6fb56e795d857ea927f28112f7321e713…
other factor of n: n/f = 0xfc069e141107cf589b9464d8341ea18b4c2769513331f…

Calculated 
Signature has 
changed

Found a factor!



Cannot Access Secure Areas - Protected by TZASC
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[root@alarm ~]# cat /sys/module/row/params/do_dump_target_pa
[ 5372.191371] Unhandled fault: imprecise external abort (0x406) at 0x76e15004
[ 5372.198354] pgd = 8ced0000
[ 5372.201071] [76e15004] *pgd=1cdd5831, *pte=1b3c175f, *ppte=1b3c1c7f
[ 5372.207400] Internal error: : 406 [#1] SMP ARM



Conclusion
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● Proof of attackability

● Limitation: Attack memory along S/NS border

● Need to study current TrustZone implementations to determine if exploitable

● Mitigation is simple

● Intern positions open: LLVM Obfuscator / Side-Channel Analysis
                                        Distributed Computing



Questions
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Remarks (1)
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Different point of view compared to other Rowhammer applications:

We are at kernel level, so:

● Easy to access memory using physical addresses
● Easy to bypass caches

This is how drivers for memory mapped devices work
  See /proc/iomem



Remarks (2)
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Do real world TEE implementations use S regions where Rowhammer is possible?

→ Need to make a mapping of the address space
Easily done from NS space, access to S regions ⇒ external abort



Why Trusty?
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Simple & Clean implementation (but no docs)

● Based on LK, nearly vanilla
○ Multiple kernel tasks, preemptive scheduler
○ Memory Management primitives (page tables, ...)
○ Usual primitives: mutexes, timers, …

● Trusty additions in another repo (extensible build system)
○ TrustZone Monitor
○ Userspace applications + syscall interface
○ High Level IPC between S / NS



Trusty - Board Support
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● New platform lk/trusty/platform/

● Cortex-A9 Support (rough):
○ GICv1
○ Private Timer

● Drivers
○ UART
○ TZASC
○ ...



Annex
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Trusty Source Code Organization
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● external/lk: Nearly “normal” LK

● lk/trusty: additions to LK

○ lib/sm: TrustZone Monitor

○ lib/uthread: Userspace threads

○ lib/trusty: Various

○ platform/generic-arm64: Support for qemu arm64 virtual board.

○ platform/vexpress-a15: Support for ARM’s reference board

● app: Userspace trusty applications “Trustlets”.



Stdcall / Fastcall calling conventions
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SMC, parameters in registers:
● Fastcall: atomic
● Yielding call “stdcall”: can be preempted by a NS interrupt (needs resume)

In Trusty an SMC Number is defined as:

#define SMC_FASTCALL_NR(entity, fn) SMC_NR((entity), (fn), 1, 0)

#define SMC_NR(entity, fn, fastcall)
                         ((fastcall) & 0x1) << 31) | \

    ((entity) & 0x3F)  << 24) | \
    ((fn) & 0xFFFF) \
    )



Trusty fastcall
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Trusty: register handler to trusty

int callback(args) { … }
register_fastcall(call number, callback)

Linux: use trusty library in order to issue an SMC with particular call number

int ret = trusty_fastcall(call number, args)
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