
Who we are

1

Eshard - Embedded Security Company

● Software & Hardware Security

What do we do:

● Tools: Side Channel / Code Analysis
● Consultancy
● Audit
● Training

@eshardNews

https://www.eshard.com

contact@eshard.com

Bordeaux + Marseille

https://www.eshard.com
mailto:contact@eshard.com

Attack TrustZone
with Rowhammer

2

Pierre Carru - eshard
pierre.carru@eshard.com

GreHack 2017

mailto:pierre.carru@eshard.com
https://www.eshard.com/
mailto:pierre.carru@eshard.com

Presentation Summary

3

1. Rowhammer → Corrupt Mem

2. TrustZone → Secure enclave ~25 min

3. Attack: Corrupt TrustZone Mem

4. Questions

Context - Existing Rowhammer-based Exploitations

4

● Intel
○ clflush instruction (2014 original attack)
○ cache eviction (rowhammer.js 2015)
○ non-temporal instructions (2016)
○ one location hammering (few days ago)

● Mobile (arm):
no direct way for unprivileged user
○ Drammer (end 2016)

uses uncached memory region
→ exploit gains root privilege

○ No cache eviction method working yet
→ not enough access/second (yet)?

Context - Existing TrustZone Attacks

5

● Software Bugs in Qualcomm’s TEE, and Widevine TA:
○ Dan Rosenberg (2014):

Integer overflow
No exploitation

○ Gal Beniamini (2015 - 2016):
1. Missing parameter validation in Secure Kernel Call

→ Shellcode execution in Secure Kernel
2. Buffer Overflow in Widevine TA

→ Shellcode execution in TA, and then in Secure Kernel

● CLKSCREW (Tang 2017):
Faults in microarchitecture using frequency and voltage scaling

→ Retrieve private key, Load self-signed TA

● Other ARM Plaforms: undisclosed / unknown?

⇒ Few TrustZone Attack

Rowhammer attack against TrustZone

6

Assumption:

● Rowhammer vulnerable device
● Kernel Privilege in Normal OS

Objectives:

● Corrupt Memory marked Secure
● If possible, exploit corruptions in order to gain more privileges

We focus on the Secure / Non-Secure border
→ We use maximum privilege in Non-Secure Side

Linx Kernel TEE Kernel

NS S

User TEE User

Realization - Example Exploitation

7

Platform: Any Cortex-A based ARM Development board with TrustZone Support

● Linux in Non-Secure Side
● Custom Trusty based TEE

PoC attack:

1. TEE provides an RSA-CRT signing mechanism
2. Secret Key stored in S Memory
3. Linux uses Rowhammer to fault the Secret Key (crosses the TrustZone border)
4. Linux uses faulty signature to recover Secret Key “Bellcore”

(Boneh, DeMillo, Lipton)

Exploitation Principle (1)

8

Linux TEE

Non-Secure World
“NS”

Secure World
“S”

RSA key
• public: n, e
• private: d, p, q
• precomputed private: dp,dq, qInv

Please sign m=“Hello”

Compute using RSA key
 c ← RSA-CRT(key, m)Return signature c=0x24A96…

 and public key (n,e)

Exploitation Principle (2)

9

Linux TEE

Non-Secure World
“NS”

Secure World
“S”

RSA key
• public: n, e
• private: d, p, q
• precomputed private: dp

’,dq, qInvPlease sign m=“Hello”

Compute using RSA key
 c’ ← RSA-CRT(key’, m)Return signature c’=0x68F6…

 and public key (n,e)

Rowhammer attack
 targeted at key area Faults dp — its value is now dp

’

Recovers private RSA key
Using m and c’ values

Rowhammer

10

System Architecture

11

SoC

ProcessorProcessorProcessor

Processor

DRAM
Controller

DRAM Chip

AXI

DDR
Protocol

DRAM Chip

L1
Cache

L2
Cache

AXI

Need to Go through the caches! May reorder
accesses

usually only 1 PoP
on mobile

How to generate
faults in DRAM

12

DRAM Storage Cell

13

Capacitor as storage mechanism

Capacitor either:

● charged → logic 1
● discharged → logic 0

Capacitors lose their charge over time

⇒ have to be recharged periodically
“refreshed”

A DRAM Chip contains multiple Banks

14

Usually on Mobile:

1 PoP LPDDR3/4 Chip

Image: Onur Mutlu

x8 DRAM Bank

15Image: Memory Systems - Cache, DRAM, Disk

DRAM Array

16

ACTIVATE
Open Row
→ Row Buffer

READ/WRITE
R or W Column
(in buffer)

PRECHARGE
Close Row

REFRESH

Row Buffer

Row 3

Row 2

Row 1

Row 0

Cell
Bitline

Wordline

R
ow

 D
ec

od
er

Sense
Amplifier

Address

Column Decoder

MS

LS

Data Out

Row Access

17

Access to an opened row:

● No need to ACTIVATE
● Just READ/WRITE to access row buffer

Access to a closed row:

● PRECHARGE current row
● ACTIVATE new row
● READ/WRITE

Simple-Sided Rowhammer

18

Need to ACTIVATE two distinct Rows in the same Array
Because accessing the same Row consecutively ⇒ hit the row buffer

ROW BUFFER

ROW 4

ROW 3

ROW 2

ROW 1

May generate

0 → 1 or 1 → 0 flips

Double-Sided Rowhammer

19

Hammer rows adjacent to the target Row → generates more flips

Flips are reproducible on
 a particular RAM chip
→ due to manufacturing?

ROW BUFFER

ROW n+1

ROW n

ROW n-1

How to address
rows from CPU

20

Memory Mapping - How to address adjacent rows (1)

21

Bank 0 Bank 1

4 Banks, x8 Bus Width
No Bank Interleaving

8 A
rra

ys

. . .

Byte [0x00]
Row 0 Col 0: 8 bits
(1 bit per Array)

Byte [0x01]
Byte [n_col - 1]

Byte [n_col]

Bottom and Top rows can’t
be attacked with double
sided technique

Memory Mapping - How to address adjacent rows (2)

22

Bank 0 Bank 1

4 Banks, x8 Bus Width
With Bank Interleaving

8 A
rra

ys

Byte [0x00]
Row 0 Col 0: 8 bits
(1 bit per Array)

Byte [0x01]
Byte [n_col - 1]

Byte [n_col]

. . .

Byte
[n_col×n_banks]

Deduce Memory Characterics & Configuration using Timing Characterization

23

Pseudo code (simplified)

base = 0x…;
for (i = start;
 i < end;
 i += step) {
 ts = start()
 read_at(base)
 read_at(i)
 time[i] = end(ts)
}

Can be crossed checked with datasheets if DRAM Chip is identified

Rowhammer Implementation (2)

24

Need to map region around target physical location

→ ioremap [target_pa - Δ, target_pa + Δ]

Need to bypass the caches: “uncacheable” region

→ ioremap_nocache
SoC

ProcessorProcessorProcessor

Processor
DMC DRAM

L1 L2

Kernel TEE
Kernel

NS S

User TEE User

Timer

Rowhammer Implementation (1)

25

/* row before */
addrs[0] = target_va - (mem->n_banks * mem->row_size);
/* row after */
addrs[1] = target_va + (mem->n_banks * mem->row_size);

for (int j = 0; j < iterations; j++) {
 row_before = pattern; / write or read */
 *row_after = pattern;
}

In Kernel Module for simplicity
Code Simplified:

TrustZone

26

TrustZone Rationale

27

Want:
● Secure processor runs OS with manageable Security

≠ Android
● Some hardware resources only accessible to Secure OS

Do not want to:
● Waste silicon space on separate processor
● Hardware duplication

→ TrustZone:
● Time sharing of processor, ≈ virtually 2 distinct processors
● Some resources available only to the Secure processor

System Bus - AXI

28

Masters:

● Read from slaves
● Write to slaves

TrustZone Introduces a new
transaction attribute:

NS ∈ {0, 1}

CPU

DRAM
Controller

AXI interface

Image: ARM

S read to 0x1234 NS read to
0x1234

ex: DMA Controller,
Modem, ...

Adaptations to IPs

AXI slave responsible to enforce S/NS logic

 L1, L2 Caches
 Memory controller
 Touchscreen
 DMA controller
 MMU
 Interrupt controller
 …

Existing devices can be modified to become aware of TrustZone
Or an extra adapter IP can wrap a device to provide S/NS logic

29

ARM
Gadget2008

30

ARM Procesor Architecture extensions

Principles:

Only “secure software” can make S transactions.
NS OS calls “secure software” which checks if call request is legal

Implementation:

New state dimension: NS is {0, 1}
New processor mode: monitor (in addition to usr, svc, …) PL1
New instruction: SMC, similar to SVC but for: PL1 → monitor
New system controls (SCR, …), CP15 Register banking

31

Modes, privilege levels, Security States (Simplified, ARMv7-A)

32

Modes, privilege levels, Security States (Simplified, ARMv7-A)

SMC

SVC

SMC

SVC

ERET
ERET

ERET ERET

33

In one state at a time
(per core)

Start linux

Execution

34

Bootloader

Non-Secure Secure

Time

Startup

Init

Context Switches
through monitor

S Interrupt

Linux

TEE OS

Offer services
to linux

Attack

35

RSA-CRT - Fast implementation of the RSA signature based on CRT

36

Signature s of the message m is defined as:

Some constants precalculated at key generation

The signature can be calculated:
exponents and modulus are smaller ⇒ faster

 RSA-CRT Fault Attack - “Bellcore”

37

On the Importance of Checking Cryptographic Protocols for Faults
Boneh, DeMillo, Lipton 1997

If dq is faulted and becomes dq’
The signature calculation become s’ instead of s

p can then be calculated and is:
The whole private key can then be derived

PoC - Implemented System Overview

38

Trusty generates random RSA key in secure
memory at boot

Offers signature mechanism to Linux

“row” module used to generate faults to a
target address using Rowhammer

“sign” tool uses Trusty’s signature service
and calculates gcd

sign
userspace tool

Linux Trusty

NS S

row

ioctl

Shared mem
+ context switch

Memory Setup

39

UnusedLinux

0 256M 512M 768M 1G

0x1000_0000

0

DRAM
U
A
R
T

G
I
C

0x1000_0000 0x5000_0000 0xFFFF_FFFF

0x5000_00000x2000_0000 0x3000_0000 0x4000_0000

Board physical address space

Offset in
DRAM

1G

Keys Trusty

DRAM Physical addresses 0x4800_0000

Example Session - Sign Message - No Fault in Key

40

[root@alarm ~]# ./sign hello
message: 0x68656c6c6f00000000000000000000000000…
[5326.601784] row: ROW_IOCTL_SIGNATURE
sign_crt:88: s = 0x7c1a8306e5a4910b3d94d06e62174f4669…
public key:
 e = 0x3
 n = 0xc2c617ed42871bfc97b83cc1e392f0b03323858…
signature: 0x7c1a8306e5a4910b3d94d06e62174f4669…
gcd == n, no fault have happened in the key area

Kernel

Trusty

Userspace

Example Session - Hammer

41

[root@alarm ~]# echo 1 > /sys/module/row/params/do_hammer
[5343.279638] row: addr[0]=a17f0000 (pa 400F0000)
[5343.284277] row: addr[1]=a1810000 (pa 40110000)
[5346.779417] dmc: R=2MB nR=0M 0 MnR/s (29) @ ~0 MB/s
[5346.779417] W=128MB nW=32M 9 MnW/s (4) @ ~36 MB/s
[5346.790429] row: elapsed=42294

Memory Controller
Counters

Example Session - Sign Message - Key Faulted

42

[root@alarm ~]# ./sign hello
message: 0x68656c6c6f00000000000000000000000000…
[5355.711724] row: ROW_IOCTL_SIGNATURE
sign_crt:88: s = 0x657eb547c65344406a9d7f44a58d…
public key:
 e = 0x3
 n = 0xc2c617ed42871bfc97b83cc1e392f0b03323858…
signature: 0x657eb547c65344406a9d7f44a58da72860…
Success: found private factor f:
0xc5d85c20911b6fb56e795d857ea927f28112f7321e713…
other factor of n: n/f = 0xfc069e141107cf589b9464d8341ea18b4c2769513331f…

Calculated
Signature has
changed

Found a factor!

Cannot Access Secure Areas - Protected by TZASC

43

[root@alarm ~]# cat /sys/module/row/params/do_dump_target_pa
[5372.191371] Unhandled fault: imprecise external abort (0x406) at 0x76e15004
[5372.198354] pgd = 8ced0000
[5372.201071] [76e15004] *pgd=1cdd5831, *pte=1b3c175f, *ppte=1b3c1c7f
[5372.207400] Internal error: : 406 [#1] SMP ARM

Conclusion

44

● Proof of attackability

● Limitation: Attack memory along S/NS border

● Need to study current TrustZone implementations to determine if exploitable

● Mitigation is simple

● Intern positions open: LLVM Obfuscator / Side-Channel Analysis
 Distributed Computing

Questions

45

Remarks (1)

46

Different point of view compared to other Rowhammer applications:

We are at kernel level, so:

● Easy to access memory using physical addresses
● Easy to bypass caches

This is how drivers for memory mapped devices work
 See /proc/iomem

Remarks (2)

47

Do real world TEE implementations use S regions where Rowhammer is possible?

→ Need to make a mapping of the address space
Easily done from NS space, access to S regions ⇒ external abort

Why Trusty?

48

Simple & Clean implementation (but no docs)

● Based on LK, nearly vanilla
○ Multiple kernel tasks, preemptive scheduler
○ Memory Management primitives (page tables, ...)
○ Usual primitives: mutexes, timers, …

● Trusty additions in another repo (extensible build system)
○ TrustZone Monitor
○ Userspace applications + syscall interface
○ High Level IPC between S / NS

Trusty - Board Support

49

● New platform lk/trusty/platform/

● Cortex-A9 Support (rough):
○ GICv1
○ Private Timer

● Drivers
○ UART
○ TZASC
○ ...

Annex

50

Trusty Source Code Organization

51

● external/lk: Nearly “normal” LK

● lk/trusty: additions to LK

○ lib/sm: TrustZone Monitor

○ lib/uthread: Userspace threads

○ lib/trusty: Various

○ platform/generic-arm64: Support for qemu arm64 virtual board.

○ platform/vexpress-a15: Support for ARM’s reference board

● app: Userspace trusty applications “Trustlets”.

Stdcall / Fastcall calling conventions

52

SMC, parameters in registers:
● Fastcall: atomic
● Yielding call “stdcall”: can be preempted by a NS interrupt (needs resume)

In Trusty an SMC Number is defined as:

#define SMC_FASTCALL_NR(entity, fn) SMC_NR((entity), (fn), 1, 0)

#define SMC_NR(entity, fn, fastcall)
 ((fastcall) & 0x1) << 31) | \

 ((entity) & 0x3F) << 24) | \
 ((fn) & 0xFFFF) \
)

Trusty fastcall

53

Trusty: register handler to trusty

int callback(args) { … }
register_fastcall(call number, callback)

Linux: use trusty library in order to issue an SMC with particular call number

int ret = trusty_fastcall(call number, args)

References

54

DRAM
● Memory Systems - Cache, DRAM, Disk
● Computer Architecture - Main Memory, Onur Mutlu
● Rajeev Balasubramonian
● Main Memory - Christos Kozyrakis

Rowhammer
● Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, Yoongu Kim
● Exploiting the DRAM rowhammer bug to gain kernel privileges, Mark Seaborn and Thomas Dullien
● Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript, Daniel Gruss, Clémentine Maurice, and Stefan Mangard
● Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, Victor van der Veen

TrustZone
● Reflections on Trusting TrustZone, Dan Rosenberg
● https://bits-please.blogspot.com, Gal Beniamini

RSA-CRT Fault Attack
● On the Importance of Checking Cryptographic Protocols for Faults, Boneh, DeMillo, Lipton 1997

Trusty
● https://source.android.com/security/trusty/

https://bits-please.blogspot.com
https://source.android.com/security/trusty/

