
| 1Sébastien Bardin – GreHack 2017

CODE PROTECTION:

the promises and limits of

symbolic deobfuscation

Sébastien Bardin

(CEA LIST)

| 2Sébastien Bardin – GreHack 2017

ABOUT MY LAB @CEA [Paris-Saclay, France]

| 3Sébastien Bardin – GreHack 2017

IN A NUTSHELL

• Challenge: code deobfuscation

• Standard tools (dynamic, syntactic) not enough

• Semantic methods can help [obfuscation preserves semantic]

• Yet, need to be carefully adapted

• A tour on how symbolic methods can help

• Explore and discover [SANER 2016]

• Prove infeasibility [BH Europe 2016, S&P 2017]

• Simplify [SSTIC 2017]

| 4Sébastien Bardin – GreHack 2017

OUTLINE

• Context

• Code Protection

• Semantic analysis

• Symbolic deobfuscation

• Basis: Symbolic execution

• Part I: Explore & Discover -- crackme

• Part II: Prove infeasibility -- malware x-tunnel

• Part III: Simplify -- devirtualization

• Conclusion

| 5Sébastien Bardin – GreHack 2017

MATE: MAN-AT-THE-END ATTACK

MITM: Man-In-The-Middle

Attacker is on the network

• Observe messages

• Forge messages

Known crypto solutions

MATE: Man-At-The-End

Attacker is on the computer

• R/W the code

• Execute step by step

• Patch on-the-fly

New field

| 6Sébastien Bardin – GreHack 2017

FACT: SOFTWARE IS JUST DATA

• You can execute it

• But you may prefer to:

• Read it <reverse legacy code, or …………….. steal crypto keys>

• Modify it <patch a bug, or ………………………. bypass a security check>

Code & Data protection

(obfuscation)

Code & Data attack

(MATE)

| 7Sébastien Bardin – GreHack 2017

<aparté> NOT SO HARD FOR EXPERTS

| 8Sébastien Bardin – GreHack 2017

A SOLUTION: OBFUSCATION

Transform P into P’ such that

• P’ behaves like P

• P’ roughly as efficient as P

• P’ is very hard to understand

State of the art

• No usable math-proven solution

• Useful ad hoc solutions (strength?)

| 9Sébastien Bardin – GreHack 2017

OBFUSCATION IN PRACTICE

• self-modification

• encryption

• virtualization

• code overlapping

• opaque predicates

• callstack tampering

• …

| 10Sébastien Bardin – GreHack 2017

EXAMPLE: OPAQUE PREDICATE

Constant-value predicates

(always true, always false)

• dead branch points to spurious code

• goal = waste reverser time & efforts

| 11Sébastien Bardin – GreHack 2017

EXAMPLE: STACK TAMPERING

Alter the standard compilation scheme:

ret do not go back to call

• hide the real target

• return site is spurious code

| 12Sébastien Bardin – GreHack 2017

EXAMPLE: VIRTUALIZATION

Turns code P into

• a proprietary bytecode program

• + a homemade VM (runtime)

• Easy to recover the VM structure

• But does not say anything about P

long secret(long x) {

……

return x;

}

Bytecodes - Custom ISA

Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

| 13Sébastien Bardin – GreHack 2017

DEOBFUSCATION

• Ideally, get P back from P’

• Or, get close enough

• Or, help understand P

| 14Sébastien Bardin – GreHack 2017

WHY WORKING ON DEOBFUSCATION? <in an ethical manner>

• Software protection

• Assess the power of current obfuscation schemes

• Special case: white-box crypto <hide keys>

• Malware analysis

• Comprehension: help to understand the malware <goal, functions, weaknesses>

• Detection: remove the protection layer

| 15Sébastien Bardin – GreHack 2017

DEOBFUSCATION NEEDS TOOLING

• Strongly rely on human expert

• While obfuscation is automatic

Proper tool support

• Explore (find hidden parts)

• Prove (identify spurious code)

• Simplify

| 16Sébastien Bardin – GreHack 2017

<aparté> STATE-OF-THE-ART TOOLS ARE NOT ENOUGH

FOR DEOBFUSCATION

• Static (syntactic): too fragile

• Dynamic: too incomplete

Just add

mov %eax,%ecx

mov %ecx,%eax

and break results

| 17Sébastien Bardin – GreHack 2017

SOLUTION? SEMANTIC PROGRAM ANALYSIS

• From formal methods for safety-critical systems

• Semantic = meaning of the program

• Possibly well adapted

• Symbolic deobfuscation

• Explore and discover [SANER 2016]

• Prove infeasibility [Black Hat EU 2016, S&P 2017]

• Simplify [SSTIC 2017]

Semantic preserved

by obfuscation

Can reason about

sets of executions

• find rare events

• prove, simplify

+ strong

theoretical ground

| 18Sébastien Bardin – GreHack 2017

<En aparté> ABOUT FORMAL METHODS

Clear success in safety-critical

| 19

• Abstract interpretation

• Model Checking

• Symbolic model checking

• Bounded model checking

• Counter-example guided model checking

• Interpolation-based model checking

• k-induction

Sébastien Bardin – GreHack 2017

OK but … WHICH APPROACH? (Formal Method Zoo)

• Weakest precondition

• Property-directed checking

• Symbolic execution

• Interactive theorem proving

• Type systems

• Correct by construction

• …..

Constraints

• Not too hard to adapt to binary level

• Robust to nasty low-level tricks

| 20Sébastien Bardin – GreHack 2017

SYMBOLIC EXECUTION (2005)

Given a path of a program

• Compute its « path predicate » f

• Solution of f  input following the path

• Solve it with powerful existing solvers

| 21Sébastien Bardin – GreHack 2017

SYMBOLIC EXECUTION (2005)

Given a path of a program

• Compute its « path predicate » f

• Solution of f  input following the path

• Solve it with powerful existing solvers

Good points:

• No false positive = find real paths

• Robust (symb. + dynamic)

• Extend rather well to binary code

| 22Sébastien Bardin – GreHack 2017

BINSEC: SYMBOLIC DEOBFUSCATION

| 23Sébastien Bardin – GreHack 2017

PART I: EXPLORE

Advantages
• Find new real paths

• Even rare paths

« dynamic analysis on steroids »

Forward reasoning
• Follows path

• Find new branch / jumps

• Standard DSE setting

| 24Sébastien Bardin – GreHack 2017

IN PRACTICE
Solve for new dynamic targets

• Get a first target

• Then solve for a new one

• Get it, solve again, …

• Get them all!

| 25Sébastien Bardin – GreHack 2017

EXAMPLE: FIND THE GOOD PATH

| 26Sébastien Bardin – GreHack 2017

PART II: PROVE

Prove that something is

always true (resp. false)

Many such issues in reverse

• is a branch dead?

• does the ret always return to the call?

• have i found all targets of a dynamic jump?

• does this expression always evaluate to 15?

• …

Not addressed by DSE
• Cannot enumerate all paths

| 27Sébastien Bardin – GreHack 2017

BACKWARD SYMBOLIC EXECUTION

Explore & discover • Prove infeasible

| 28Sébastien Bardin – GreHack 2017

CASE-STUDY: PACKERS

Packers: legitimate software protection tools

(basic malware: the sole protection)

| 29Sébastien Bardin – GreHack 2017

CASE-STUDY: PACKERS (fun facts)

| 30Sébastien Bardin – GreHack 2017

CASE-STUDY: THE XTUNNEL MALWARE (part of DNC hack)

Two heavily obfuscated samples
• Many opaque predicates

Goal: detect & remove protections
• Identify 50% of code as spurious

• Fully automatic, < 3h

| 31Sébastien Bardin – GreHack 2017

CASE-STUDY: THE XTUNNEL MALWARE (fun facts)

• Protection seems to rely only on opaque predicates

• Only two families of opaque predicates

• Yet, quite sophisticated

• original OPs

• interleaving between payload and OP computation

• sharing among OP computations

• possibly long dependencies chains (avg 8.7, upto 230)

| 32Sébastien Bardin – GreHack 2017

PART III: SIMPLIFY

Why? recover hidden simple expressions

• Junk code, junk computations

• Opaque values

• Duplicate code

• Complex patterns (MBAs)

Symbolic reasoning a priori well adapted

• Normalization / rewrite rules: (a+b-a)  b

• Solver-based proof: solve(a+b-a =!= b)

| 33Sébastien Bardin – GreHack 2017

CASE-STUDY: DEVIRTUALIZATION (tool Triton)

Goal

• Small protected hash functions

• Get the original function back

Arybo

IR

Triton AST

(+ simplif.)

Binary

code
LLVM-

IR

Binary

code

Optimizations

long secret(long x) {

……

return x;

}

Bytecode

long secret’(long x) {

……

return x;

}

Discard VM part

Simplify

& merge

| 34Sébastien Bardin – GreHack 2017

CASE-STUDY: DEVIRTUALIZATION (tool Triton)

Solve challenges 0 - 4 (25 samples)

• very close to the original codes

• sometimes even smaller!

• very efficient (<1min on 20/25)

TIGRESS Challenge

• 7 (classes of) challenges

• 5 codes per class

• Original codes: hash-like functions

• Focus on challenges 0-4

• Only challenge 1 was solved

| 35Sébastien Bardin – GreHack 2017

CASE-STUDY: DEVIRTUALIZATION (tool Triton)

• Opcode duplicate: merged!

• 2-level VM (challenge 4): still ok

• Also tested vs each VM-option

| 36Sébastien Bardin – GreHack 2017

REMINDER: SYMBOLIC DEOBFUSCATION

• EXPLORE

• PROVE

• SIMPLIFY

| 37Sébastien Bardin – GreHack 2017

LIMITS & COUNTER-MEASURES (and mitigations)

• Standard limits of DSE

• #paths, limits of solvers (float), …

• Anti-DSE proposal are blooming
• Hard-to-solve predicates

• Path splitting

• Side-channels

• Attacks all parts of the tool (solving, dynamic, taint, decoding, etc.)

• …

• Note: protections must be input-dependent, otherwise removed by standard optimizations

• Hot topic, battle in progress

• Tradeoff between performance penalty vs protection?

• Exact goal of the attacker?

| 38Sébastien Bardin – GreHack 2017

CONCLUSION & TAKE AWAY

• A tour on the advantages of symbolic methods for deobfuscation

• Semantic analysis complement existing approaches

• Well-adapted – semantics is invariant by obfuscation

• Explore, prove infeasible, simplify

• Promising case-studies

• Next Steps

• Anti-anti-DSE

• Open the way to fruitful combinations (attack & defense)

• Formal methods can be useful for binary-level security

• Yet, must be adapted: need robustness and scalability!

Commissariat à l’énergie atomique et aux énergies alternatives

Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142

91191 Gif-sur-Yvette Cedex - FRANCE

www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| 40

• Code-data confusion

• No specification (even implicit)

• Raw memory, low-level operations

• Code Size

• # Architectures

Sébastien Bardin – GreHack 2017

<aparté> THE HARD JOURNEY FROM SOURCE TO BINARY

